Learning by supplying and competition threat
نویسندگان
چکیده
منابع مشابه
Learning by Supplying
Learning processes lie at the heart of our understanding of how firms build capabilities to generate and sustain competitive advantage: learning by doing, learning by exporting, learning from competitors, users, and alliance partners. In this paper we focus attention on another locus of learning that has received less attention from academics despite popular interest: learning by supplying. Usi...
متن کاملAn Active Learning Exercise: Supplying Hoop Dreams
We describe a board game in which students assume the roles of supply chain enterprises and move game pieces (e.g. Legos, Velcro, etc.) that represent the parts of a basketball hoop. They then assemble these parts and form the final product and sell it to the customers. The game is the first of its kind to illustrate the concepts of shortage gaming, synchronization of the flow of parts, demand ...
متن کاملLearning Reliability Models of Grid Resource Supplying
Resource exchange between Grid participants is at the core of Grid computing. Distributed bartering is a distributed and moneyless method of resource exchange. Recent work related to distributed bartering has mainly dealt with resource supplying. However, Grid participants still face an unstable resource environment due to the partial and intermittent nature of the exchanged resources. The prob...
متن کاملa comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation
هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...
15 صفحه اولOnline Meta-learning by Parallel Algorithm Competition
The efficiency of reinforcement learning algorithms depends critically on a few metaparameters that modulates the learning updates and the trade-off between exploration and exploitation. The adaptation of the meta-parameters is an open question in reinforcement learning, which arguably has become more of an issue recently with the success of deep reinforcement learning in high-dimensional state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Review of World Economics
سال: 2020
ISSN: 1610-2878,1610-2886
DOI: 10.1007/s10290-020-00386-y